On the ADI method for the Sylvester Equation and the optimal-H2 points
نویسندگان
چکیده
The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal in the sense that for the Lyapunov equation, they yield a residual which is orthogonal to the rational Krylov projection subspace. Via several examples, we show that the pseudo H2-optimal shifts consistently yield nearly optimal low rank approximations to the solutions of the Lyapunov equations.
منابع مشابه
On the ADI method for the Sylvester Equation and the optimal-$\mathcal{H}_2$ points
The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal i...
متن کاملGlobal conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملABS METHOD FOR SOLVING FUZZY SYLVESTER MATRIX EQUATION
The main aim of this paper intends to discuss the solution of fuzzy Sylvester matrix equation
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کامل